5. Cross Product
b. Cross Product and Triple Product
1. Algebraic Definition of Cross Products
The dot product is one way to compute the product of two vectors and it produces a scalar. The cross product is another way to compute the product of two vectors, but it produces a vector.
The cross product is only defined in 3 dimensions
(and 7 dimensions)
Why? See this Wikipedia article on the 7-dimensional cross product
If \(\vec u=\left\langle u_1,u_2,u_3\right\rangle\) and \(\vec v=\left\langle v_1,v_2,v_3\right\rangle\) are vectors, then their cross product or vector product is the vector: \[ \vec u\times\vec v =\left\langle u_2v_3-u_3v_2,u_3v_1-u_1v_3,u_1v_2-u_2v_1\right\rangle \]
The name cross product is used to emphasize that it is denoted by putting a cross between the two vectors.
The name vector product is used to emphasize that the cross product takes two vectors and gives back a vector, unlike the dot (or scalar) product, which takes two vectors and gives back a scalar.
Although it is possible to this formula for the cross product, it is usually only used for theoretical purposes. No one actually uses this formula to compute a cross product. Rather, we use a formula based on the determinant.
How to remember the formula:
\[ \vec u\times\vec v =\left\langle u_2v_3-u_3v_2,\quad u_3v_1-u_1v_3,\quad u_1v_2-u_2v_1\right\rangle \] The first component has no \(1\) subscripts, the second has no \(2\)'s, the third has no \(3\)'s.
The positive term in each component has the remaining numbers in cyclic order: \(123123123\), and the negative term has them in reverse order.
Consider the "formal" determinant expanded on the top row:
Why this is called "formal"
The determinant is defined for a matrix of numbers. This "formal" matrix has \(\hat\imath,\hat\jmath,\) and \(\hat k\) on the top row and so is not really a determinant.
\[\begin{aligned} \det\begin{pmatrix} \hat\imath & \hat\jmath & \hat k \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{pmatrix} &=\hat\imath \begin{vmatrix} u_2 & u_3 \\ v_2 & v_3 \end{vmatrix} -\hat\jmath \begin{vmatrix} u_1 & u_3 \\ v_1 & v_3 \end{vmatrix} +\hat k \begin{vmatrix} u_1 & u_2 \\ v_1 & v_2 \end{vmatrix} \\ &=(u_2v_3-u_3v_2)\hat\imath-(u_1v_3-u_3v_1)\hat\jmath+(u_1v_2-u_2v_1)\hat k \\ &=\left\langle u_2v_3-u_3v_2,u_3v_1-u_1v_3,u_1v_2-u_2v_1\right\rangle \end{aligned}\] This is the same as the cross product. So we have:
The cross product of \(\vec u=\left\langle u_1,u_2,u_3\right\rangle\) and \(\vec v=\left\langle v_1,v_2,v_3\right\rangle\) may be computed using the determinant: \[ \vec u\times\vec v =\begin{vmatrix} \hat\imath & \hat\jmath & \hat k \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{vmatrix} \] which has \(\hat\imath,\hat\jmath,\) and \(\hat k\) on the first row, the vector \(\vec u\) on the second row and \(\vec v\) on the third row.
Memorize This!
Compute the cross product of the vectors \(\left\langle 1,2,1\right\rangle\) and \(\left\langle -2,5,6\right\rangle\).
The cross product is \[\begin{aligned} \left\langle 1,2,1\right\rangle\times\left\langle -2,5,6\right\rangle &=\begin{vmatrix} \hat\imath & \hat\jmath & \hat k \\ 1 & 2 & 1 \\ -2 & 5 & 6 \end{vmatrix} \\ &=\hat\imath\begin{vmatrix} 2 & 1 \\ 5 & 6 \end{vmatrix} -\hat\jmath\begin{vmatrix} 1 & 1 \\ -2 & 6 \end{vmatrix} +\hat k\begin{vmatrix} 1 & 2 \\ -2 & 5 \end{vmatrix} \\ &=(12-5)\hat\imath-(6+2)\hat\jmath+(5+4)\hat k \\ &=7\hat\imath-8\hat\jmath+9\hat k=\left\langle 7,-8,9\right\rangle \end{aligned}\]
Don't forget the minus before the \(\,\large \hat\jmath\)-term!
Find the cross product of the vectors \(\vec a=\left\langle 3,-2,1\right\rangle\) and \(\vec b=\left\langle 2,3,0\right\rangle\).
\(\vec a\times\vec b=\left\langle -3,2,13\right\rangle\)
\[\begin{aligned} \vec a\times\vec b &=\begin{vmatrix} \hat\imath & \hat\jmath & \hat k \\ 3 & -2 & 1 \\ 2 & 3 & 0 \end{vmatrix} \\ &=\hat\imath\begin{vmatrix} -2 & 1 \\ 3 & 0 \end{vmatrix} -\hat\jmath\begin{vmatrix} 3 & 1 \\ 2 & 0 \end{vmatrix} +\hat k\begin{vmatrix} 3 & -2 \\ 2 & 3 \end{vmatrix} \\ &=(0-3)\hat\imath-(0-2)\hat\jmath+(9+4)\hat k \\ &=-3\hat\imath+2\hat\jmath+13\hat k=\left\langle -3,2,13\right\rangle \end{aligned}\]
Here are the two most important properties of the cross product:
Since a determinant changes sign when two rows are interchanged, the cross product changes sign when the two vectors are interchanged:
The Cross Product is Anti-Commutative: \(\qquad \vec u\times\vec v=-\vec v\times\vec u\)
Since a determinant is zero when two rows are equal, the cross product is zero when the two vectors are equal:
If the two vectors are equal, their Cross Product is zero: \(\qquad \vec v\times\vec v=0\)
Finally check the following \(3\) cross products which say \(\hat \imath\), \(\hat \jmath\) and \(\hat k\) are a right handed triplet.
Verify \[ \hat \imath\times\hat \jmath=\hat k \qquad \hat \jmath\times\hat k=\hat \imath \qquad \hat k\times\hat \imath=\hat \jmath \]
We use \[\begin{aligned} \hat \imath=\langle1,0,0\rangle \qquad \hat \jmath=\langle0,1,0\rangle \qquad \hat k=\langle0,0,1\rangle \end{aligned}\] Then \[ \hat \imath\times\hat \jmath =\begin{vmatrix} \hat\imath & \hat\jmath & \hat k \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{vmatrix} =\langle0,0,1\rangle =\hat k \] \[ \hat \jmath\times\hat k =\begin{vmatrix} \hat\imath & \hat\jmath & \hat k \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \end{vmatrix} =\langle1,0,0\rangle =\hat \imath \] \[ \hat k\times\hat \imath =\begin{vmatrix} \hat\imath & \hat\jmath & \hat k \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{vmatrix} =\langle0,1,0\rangle =\hat \jmath \]
Heading
Placeholder text: Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum